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1 Data sets description

Temperature data sets include seven different products, based on in situ data
(Climate Research Unit (CRU) [7], University of Delaware (UDel) 5, NASA
Goddard Institute for Space Studies (GISS) [6], Merged Land-Ocean Surface
Temperature (MLOST) [19]), and satellite (International Satellite Cloud Cli-
matology Project (ISCCP) [17], Land Parameter Retrieval Model (LPRM) [8]).
We also included one reanalysis data set produced by ERA-Interim global at-
mospheric reanalysis (European Centre for Medium-Range Weather Forecasts
(ECMWF) [3]).

Precipitation data sets consist of ten products. Specifically, four of them (Cli-
mate Research Unit (CRU) [7], University of Delaware (UDel) 5, Climate Predic-
tion Center (CPC) [26], Global Precipitation Climatology Centre (GPCC) [18])
have been produced by in-situ data, three by satellite data (Climate Prediction
Center morphing method (CMORPH) [10], Precipitation Estimation from Re-
motely Sensed Information using Artificial Neural Networks (PERSIANN) [20],
(3B42RT) [9]) and the rest by a combination of the two of them (CPC Merged
Analysis of Precipitation (CMAP) [25], ERA-Interim [3], Global Precipitation
Climatology Project (GPCP) [1]).

For radiation two different products have been collected, the first one based
on satellite data (NASA/GEWEX Surface Radiation Budget (SRB) [21]) and
the second one on reanalysis data (ERA-Interim) [3]. The surface soil moisture
products have been produced by satellite data (Global Land Evaporation - Am-
sterdam Methodology (GLEAM) [14], NASA [15], Climate Change Initiative
(CCI) [11,12,24]). The three soil moisture products by CCI consist of a merged
product created from all active data sets, a merged product created from all
passive data sets as well as a product created from merged active and merged

5 http://www.esrl.noaa.gov/psd/data/gridded/data.UDel_AirT_Precip.html

http://www.esrl.noaa.gov/psd/data/gridded/data.UDel_AirT_Precip.html
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Table 1: Data sources that are used in our experiments. The basic datasets’
characteristics are provided, the variable name, the product name (abbrevation
of the providers), the initial spatial and temporal resolution and the temporal
coverage.

Variable Product Name Spatial Res. Temporal Res. Coverage

Temperature

CRU-HR 0.5◦ monthly 1981-2011
UDEL 0.5◦ monthly 1981-2010
ISCCP 2.5◦ daily 1983-2009
ERA 0.25◦ daily 1981-2011
GISS 2◦ monthly 1981-2011

MLOST 5◦ monthly 1981-2011
LPRM 0.25◦ daily 2002-2011

Water

CRU-HR 0.5◦ monthly 1981-2011
CMORPH 0.25◦ daily 1998-2011

UDEL 0.5◦ monthly 1981-2010
PERSIANN 0.25◦ daily 2001-2011

CMAP 2.5◦ monthly 1981-2011
CPCU 0.25◦ daily 1981-2011

3B42RT 0.25◦ daily 1998-2011
GPCC 0.5◦ monthly 1981-2010
GPCP 2.5◦ monthly 1981-2011
ERA 2.5◦ daily 1981-2011

GLEAM 0.25◦ daily 1981-2011
NASA 0.25◦ daily 2002-2011

ESACCI-ACTIVE 0.25◦ daily 1991-2011
ESACCI-PASSIVE 0.25◦ daily 1981-2011

ESACCI-COMBINED 0.25◦ daily 1981-2011
GLOBSNOW 0.25◦ daily 1981-2011

Radiation
SRB 1◦ daily 1983-2007
ERA 0.25◦ daily 1981-2011

Greenness(NDVI) GIMMS 0.25◦ monthly 1981-2011

passive products. Finally, snow water equivalents data set includes a satellite-
based product (GlobSnow project [13]).

For vegetation, we use the satellite remote sensed products of Normalized
Difference Vegetation Index (NDVI). Data from the Global Inventory Modeling
and Mapping Studies (GIMMS) data set has been used, which is one of the most
commonly used NDVI data sets [22] covering a wide time interval of 30 years
(1981-2011).

2 Construction of target variable

Before constructing those features, we first decompose the target and predictor
time series into trends, seasonal cycles and anomalies. This is an important
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step, because the trend and seasonal component of the vegetation time series
are not influenced by climatic features and thus we can search for interesting
relationships between climate and vegetation time series.
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Fig. 1: The three components of the time series decomposition. On top, the linear
trend fitted on the raw data, in the middle, the seasonal component and on the
bottom the remaining anomalies of the NDVI time series. See text for details.

Many methods for decomposing time series have been proposed in the liter-
ature [2,23]. We decided to use an additive model without break-points, since it
is conceptually-simple, while delivers satisfactory results in a reasonable amount
of time. For the target time series, this decomposition looks as follows:

Yt = Tt + St +Rt (1)

with Tt the long-term trend, St the seasonal cycle and Rt the anomalies or
residuals. The target time series is decomposed following three sequential steps.
In a first step, time series Yt is at every pixel de-trended linearly based on the
entire study period, using a simple linear regression model:

Yt ≈ β1 × t+ β0 = Tt .

In this way we obtain the de-trended time series, Dt = Yt − Tt. In a second
step, the seasonal cycle St is estimated as a monthly expectation, taking the
multi-year average for each month of the year. In a last step, the anomalies are
calculated by subtracting the corresponding monthly expectation from the de-
trended time series, Rt = Dt − St. The same time series decomposition method
is followed for all predictor time series as well. Figure 1 shows for one particular
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Table 2: Overview of the extreme indices. We apply the indices to raw (daily)
data as well as to the (daily) anomalies (residuals with the trend). We also
incorporate the lags and the cumulatives to investigate further their impact on
vegetation response.

Name Description

Spatial Heterogeneity a Difference between max and min values within 1
degree box

STD Standard deviation of daily values per month

DIR
Difference between max and min daily value per

month
Xx/Xn Max/Min daily value per month

Max5day/Min5day Max/Min over 5 consecutive days per month
X99p/X95p/X90p Num. of days per month over 99th/95th/90th prc
X1p/X5p/X10p Num. of days per month below 1th/5th/10th prc

T25C/T0Cb Num. of days per month over 25C/below 0C
R10mm/R20mmc Num. of days per month over 10mm/20mm

CHD (Consecutive High value Days)
/CLD (Consecutive Low value Days)

Num. of consecutive days per month over 90th

prc/below 10th prc
CDD (Consecutive Dry Days)/CWD

(Consecutive Wet Days) c
Num. of consecutive days per month when

precipitation <1 mm/≥ 1 mm

a Only for datasets with native spatial resolution <1◦ lat-lon
b Only for temperature data sets
c Only for precipitation data sets

pixel a decomposition of the original time series, using the three-step procedure.
The anomalies component (Rt) of the NDVI variable is the target variable that
we use in our analysis.

3 Extreme indices

In our work, we have calculated different monthly indices on the raw data as well
as on the residuals (including the trend) based on the recommended indices of
[5,27]. Table 2 summarizes the extreme indices calculated for climate drivers. We
also incorporate the time-lags and the cumulatives on the extremes in order to
investigate the role of lagged responses to the past climate extremes (e.g. [4,16])
and the cumulated character of the extremes, respectively.

References

1. R.F. Adler et al. The version-2 global precipitation climatology project (gpcp)
monthly precipitation analysis (1979-present). Journal of hydrometeorology,
4(6):1147–1167, 2003.



Discovering relationships in climate-vegetation dynamics 5

2. R. B. Cleveland et al. Stl: A seasonal-trend decomposition procedure based on
loess. Journal of Official Statistics, 6(1):3–73, 1990.

3. D.P. Dee et al. The era-interim reanalysis: Configuration and performance of the
data assimilation system. Quarterly Journal of the Royal Meteorological Society,
137(656):553–597, 2011.

4. M.C. Dietze et al. Nonstructural carbon in woody plants. Annual review of plant
biology, 65:667–687, 2014.

5. M.G. Donat et al. Updated analyses of temperature and precipitation extreme
indices since the beginning of the twentieth century: The hadex2 dataset. Journal
of Geophysical Research: Atmospheres, 118(5):2098–2118, 2013.

6. J. Hansen et al. Global surface temperature change. Reviews of Geophysics, 48(4),
2010.

7. I. Harris et al. Updated high-resolution grids of monthly climatic observations–the
cru ts3. 10 dataset. International Journal of Climatology, 34(3):623–642, 2014.

8. T.R.H. Holmes et al. Land surface temperature from ka band (37 ghz) passive
microwave observations. Journal of Geophysical Research: Atmospheres (1984–
2012), 114(D4), 2009.

9. G.J. Huffman et al. The trmm multisatellite precipitation analysis (tmpa): Quasi-
global, multiyear, combined-sensor precipitation estimates at fine scales. Journal
of Hydrometeorology, 8(1):38–55, 2007.

10. R.J. Joyce et al. Cmorph: A method that produces global precipitation estimates
from passive microwave and infrared data at high spatial and temporal resolution.
Journal of Hydrometeorology, 5(3):487–503, 2004.

11. Y.Y. Liu et al. Developing an improved soil moisture dataset by blending pas-
sive and active microwave satellite-based retrievals. Hydrology and Earth System
Sciences, 15(2):425–436, 2011.

12. Y.Y. Liu et al. Trend-preserving blending of passive and active microwave soil
moisture retrievals. Remote Sensing of Environment, 123:280–297, 2012.

13. K. Luojus et al. Investigating the feasibility of the globsnow snow water equivalent
data for climate research purposes. In Geoscience and Remote Sensing Symposium
(IGARSS), 2010 IEEE International. IEEE, 2010.

14. D.G. Miralles et al. Global land-surface evaporation estimated from satellite-based
observations. Hydrology and Earth System Sciences, 15(2):453–469, 2011.

15. M. Owe et al. Multisensor historical climatology of satellite-derived global land
surface moisture. Journal of Geophysical Research: Earth Surface, 113(F1), 2008.

16. A.D. Richardson et al. Seasonal dynamics and age of stemwood nonstructural
carbohydrates in temperate forest trees. New Phytologist, 197(3):850–861, 2013.

17. W.B. Rossow and E.N. Duenas. The international satellite cloud climatology
project (isccp) web site: An online resource for research. Bulletin of the Amer-
ican Meteorological Society, 85(2):167–172, 2004.

18. U. Schneider et al. Global precipitation analysis products of the gpcc. Global
Precipitation Climatology Centre (GPCC), DWD, Internet Publikation, 112, 2008.

19. T.M. Smith et al. Improvements to noaa’s historical merged land-ocean surface
temperature analysis (1880-2006). Journal of Climate, 21(10):2283–2296, 2008.

20. S. Sorooshian et al. Evaluation of persiann system satellite-based estimates of
tropical rainfall. Bulletin of the American Meteorological Society, 81(9):2035–2046,
2000.

21. W. Stackhouse et al., Jr. P. 12-year surface radiation budget dataset. GEWEX
News, 14:10–12, 2004.



6 Christina Papagiannopoulou et al.

22. C.J. Tucker et al. An extended avhrr 8-km ndvi dataset compatible with modis and
spot vegetation ndvi data. International Journal of Remote Sensing, 26(20):4485–
4498, 2005.

23. J. Verbesselt et al. Detecting trend and seasonal changes in satellite image time
series. Remote sensing of Environment, 114(1):106–115, 2010.

24. W. Wagner et al. Fusion of active and passive microwave observations to create
an essential climate variable data record on soil moisture. In Proc. of the XXII
International Society for Photogrammetry and Remote Sensing (ISPRS) Congress,
Melbourne, Australia, volume 25, 2012.

25. P. Xie and P.A. Arkin. Global precipitation: A 17-year monthly analysis based on
gauge observations, satellite estimates, and numerical model outputs. Bulletin of
the American Meteorological Society, 78(11):2539–2558, 1997.

26. P. Xie et al. A gauge-based analysis of daily precipitation over east asia. Journal
of Hydrometeorology, 8(3):607–626, 2007.

27. X. Zhang et al. Indices for monitoring changes in extremes based on daily temper-
ature and precipitation data. Wiley Interdisciplinary Reviews: Climate Change,
2(6):851–870, 2011.


	Supplementary Material
	Data sets description
	Construction of target variable
	Extreme indices


